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Frictional Spin-Down in the Ocean & Buoyancy Shut-Down

Two Lectures on Nov/25 & Dec/02, 2011 at IHOS/NCU

Part 1: Introduction & Spin-Down of an Eddy
Part 2: Stratified flow over a sloping topography & buoyancy shut-down

by

Leo Oey
ITHOS/NCU

* Please email corrections & suggestions to: lyooey@ncu.tw.edu or lyo@princeton.edu
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Part 1. Introduction & Spin-Down of an Eddy

The Power of Wind

Although the topic of what we will study, "buoyancy shut-down", does not even
require wind to explain, wind ultimately drives the ocean and it is fundamental to
our understanding of all sorts of ocean (and atmosphere!) related phenomena. We
begin therefore with a study of how wind drives ocean currents.

Wind inputs an estimated 20TW (TeraWatts = 10'? J s™) of power into the ocean.
Approximately 19TW is consumed in the surface "mixed"” layer (ML) of depth ~
100m, generating all sorts of small-scale (< 10km) and rapidly varying (< 1day)
currents and mixing. The remaining (=<1TW) drives the large-scale ocean
circulation, eddies and waves beneath the mixed layer, and produces also bottom
mixing [Wunsch and Ferrari, 2004; Fig.1-1]. Wind, together with solar heating,!
and in a coupled manner with the air above it, then produces and/or affects various
wonderful (and some not so wonderful) things that we have come to associate with
the ocean: currents, waves, seafood, clouds, rain, snow, typhoons, ...
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Fig.1-1. Wind-induced ocean currents and mixing in the surface mixed layer, in
the nearly geostrophic interior, and near the ocean's bottom.

I The sun, of course, is the driver of all things (nearly!) on our planet.
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The (Nearly) Frictionless Ocean's (& Atmosphere's) Interior

In the fluid's (ocean's or atmosphere's) interior away from the air-sea interface and
bottom topography (including the coasts), fluid moves as if it does not have
friction (to slow it down). For large-scale flows, with spatial scales =~ 100's (10's)
to 1000's km for the atmosphere (ocean), and time scales longer than days and
months, fluid is nearly hydrostatic - meaning that the pressure (p) upon one's head
is equal to the weight per unit area of all the fluid above it (the head; Fig.1-2):

P(X.Y,Z,t) = pa(X.y,t) +_ h r ofudtd 0Q ée p/ £ miC (141)

Fig.1-2. A sketch of fluid of mean depth H(x,y) and free surface h(x,y,t), and the
hydrostatic pressure upon one's head. For ocean, p, is the atmospheric pressure.

Large-scale flows are also nearly geostrophic - meaning that the Coriolis force
associated with the fluid's velocity balances the pressure gradient force (Fig.1-3;

Appendix A):
fkxu = n @l m= -g\ ,Z on pressure-coordinate 2 (1-2a)
or u=kxnpl(m)=(g Hk<npZ (1-2b)

Here, Z = height and k = unit vector in z-direction.

Fig.1-3. Geostrophic flows around high and low pressures in the N. Hemisphere
[from Marshall & Plumb, 2003]. Note »=Kk.

2 For atmosphere, it is convenient to define variables on constant-pressure surfaces. Thus, {pl npk K EKPL E b
Kpk #D 1 Y5 3pk R=2KpkKiD L Y2k MED 0K Yowliere the |, reminds us that pressure is to be kept constant;
YR &AYAf L NI & FKadisdppsarsindRp wheteklsay > (RBRPGh hT hU s
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Those of us who watch a lot of TV should be familiar with weather charts (Fig.1-4) which
actually provide wonderful examples of geostrophic flows.
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Fig.1-4. Surface pressure (mbar; top) and winds (bottom) on Nov/21 2011 in NW Pacific.

Note that east of Taiwan, the p-contours are nearly zonal, so that geostrophic winds are easterly.
But the wind vectors are actually from the northeast. Why?

(A) How with no friction (B) Flow with friction Fric
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Fig.1-5. Balance of forces in flow (a) without and (b) with friction.

Home Work:

Explain why air diverges (converges) under a high- (low-) pressure center; and why therefore
center of low (high) is generally associated with cloudy (sunny) days.
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Potential VVorticity (PV)

To progress, we need to understand a scalar variable called potential vorticity. The PV-
conservation equation for a single-layer fluid is derived in Appendix B. Approximating the
material derivative D/Dt = 0/ot, and linearizing also the RHS, we get from (B.3):

OpHf ) / hHjudt & (1-3)

where B= z-component of the relative vorticity, h = layer thickness, H = mean layer thickness (a
constant), and Q = rate (m/s) at which fluid is pumped into (if Q>0) or withdrawn from (if Q<0)
the layer. For our purpose, it suffices to take f= constant. For Q =0, eqn.(1-3) then says that

PV = (s+f)/h is constant, Q = 0. (1-4)

The fluid acquires a positive (negative) change in its spin, 36> 0 (3:8<0), if the layer is stretched
3h > 0 (squashed, 3h <0).

Mr. EKkman's Work

Observations of the drift of the vessel Fram as it was frozen into the ice during the Norwegian
explorer Fridtjof Nansen’s (1861-1930) polar expedition of 1893-96 provided insight into the
response of the surface layer of the ocean to wind forcing. Nansen found that the drift of the ice,
and thus the current immediately underneath it, was on average directed between 20 and 40° to
the right of the wind direction. Nansen and physicist and meteorologistVilhelm Bjerknes (1862-
1951), also a Norwegian, discussed with and suggested to the young Swedish mathematical
physicist V. Walfrid Ekman (1974-1954), then a student, to treat the problem more formally
[Jenkins and Bye, 2006]. It was told that Ekman solved the problem that very evening,
producing the now famous Ekman spiral [Munk, 2002]. For the case of a simple "eddy-
viscosity" representation of the vertical shear stress, the Ekman's spiral is easily obtained
(Appendix C), and it predicts that the surface current is directed at 45° angle to the wind stress
direction. For more realistic profile of the eddy viscosity using for example the popular Mellor-
Yamada turbulence closure scheme [Mellor and Yamada, 1982], an angle of 22° (which is closer
to that observed) can be obtained.

For our purpose, we need not worry about these details however. The brilliance of Mr.Ekman is
his recognition that the near-surface (or near-bottom) layer is where shear stresses are important,
and that the layer smoothly joins beneath (above) it to the much thicker layer in which
geostrophic balance is valid. This idea is of course at the root of "boundary-layer” theory by the
German engineer Ludwig Prandtl [1904], an idea that revolutionarized the 20th century applied
mathematics. To (1-2a) we add a vertical shear stress term:

fkxu=n@m zhHU (1-5)
where z, xh ¥) i the stress vector and we have also made the approximation that the
AAT OEOU 1T &£ OEA T AAAT ET OEA DOAOOOOA.,. ¢@®@AAEAT O
geostrophicvelocity ug satisfy:

fkxug = @ w (1-6)
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so that the previous equation(1-5) can be rewritten as:
fkxug = Fg¥ R U (1-7)

where us= u- uyis the Ekman velocity = velocity relative to the geostrophic velocity.
) T OA C Ofodn/ deefditderior (but far above the ocean's bottom) to the surface:

fkxUg = 0 (1-8a)

where Us=_ ¢ M js the Ekman transport (per unit distance), andve have used the fact
that the stress far below the surfacez| -« 0, i.e. is very small. Therefore,

Ue = -k x Z°/f, or (Ug, E oy, -zoxy/f (1-8b)

Ekman transport is therefore always directed at right (90) angle to the right (for N.
Hemisphere, f>0) of the stress.

Spin-Down of an Eddy
Z
B>
C ui
IR Fluid colummn is @

< squashed, generating  "~_-

anticyclomic anormaly

o ™

Lo thatwealens the

initial cyclone ®

> Ekman flux <=

 __ =
® Bottom-5Stress @
opposes cyclone

T,=-ru'

Initial cyclone {black; speed-—~u'}
has bottom stress (browvsin) that
produces Ekman convergence
toreen) and upvelling (sreen).
Upwrelling squashes interior
{inviscid ) water column and by
PY-conservation produces
anticyclonic anomaly {red) that
weakens the original cyclone.
With time, the cyclone’s strength
decreases. This process is called
“frictional spin down.”

Fig.1-6. Bottom friction on a cyclone pumps fluid to its center at the bottom (Ekman flux) and
(as fluid upwells) squashes layers above producing anticyclonic anomaly that slows down the
cyclone. Interior fluid is also forced outward against the pressure gradient, thus doing work at
the expense of the pressure gradient that supports the cyclone.
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Part 2. Stratified flow over a sloping topography & buoyancy shut-down

Flow Rigidity due to Rotation: Thermal Wind Balance & Taylor-Proudman Theorem

Take the curl of (1-2a): nx[ml u =D Ji mhere m = fk. The LHS is:
x(mxu) =m(n.u) - u(t.m) + uMm-mu =unm-mnu

where we have used 1 x(axb) =an.b - bl.a+ b.Na - anb, for any 2 vectors a and b, l.u =
Ou/ Ox + Ov/ Oynd @wk)O® Thd RHS is:

Ux(p/M) = -(Uxp)/m+ (Tt AE = (1 mn VAR
Thus, Mlu+( Ml DM =unm (2-1)

For motion such that both [u| and "M are small (the latter means that M8 ¢ 0 n, 8.tma n tigh
RHS may be neglected, hence the Thermal-Wind Balance equation:

m8d+ (N ml DM =0 (2-2)

If m= constant, or if the pressure and density surfaces coincide or are parallel to each other, then,
n o B méa AWAOz = O (2-3)

The velocity must then be independent of z. If the flow is further constrained by an upper or

lower boundary where w = 0, then w 0 everywhere and the horizontal velocity then has no
vertical shears:

O(u,v)/I 06z = 0. (2-4)

Equation (2-3) is the Taylor-Proudman theorem [formula derived by Proudman, 1916] and
Taylor [1917] demonstrated it in a laboratory experiment (figs.2-1, 2-2 & 2-3).

Q

Fig.2-1. In a rapidly rotating tank, slow horizontal flow goes around a solid (cylindrical) obstacle
that partially protrudes from the bottom of the tank.
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Obstacles on base of tank

SN

Fig.2-2. Laboratory demonstration of Taylor-Proudman Theorem. In a rotating tank, floating
debris flow around an obstacle that partially protrudes from the bottom of the tank.
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Fig.2-3. Numerical demonstration of Taylor-Proudman Theorem: nearly-steady homogeneous
(constant-density) flow in an x-periodic channel, 600km by 300km, of depth 200m except at the
center where a cyl i ndserfaceheighsies 50m a

channel 0

S

meters and vectors are velocity at (A) z=0m (i.e. surface), (B) z=- 90m and (C) z=- 180m. This
model calculation was carried out for 100 days when the flow has reached a nearly steady state.
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Rotation therefore imparts "rigidity" to the fluid in the direction of the rotation vector.

For non-constant m and if the pressure and density surfaces do not coincide or are not parallel to
each other, I mh B 0. Equation (2-2) then says that, in a rapidly rotating flow, the fluid's spin
produced in the stream-wise direction (x-direction, say) as a result of tilting of the background
spin in that same direction, M8 W, is balanced by the cross (%) between density and pressure
surfaces, (1 M0 EYM. To a good approximation, the © £in the cross-product © mn Bmnay be
approximatedbykOp / Oz, pointing downwar d:

np & (0, O, -~np/ Oz) = (0, O, (2-3)
Equation (2-2) then becomes:

f (Ou/l Oz ,m) OW IO®PF )OxB0 K /gdy, Ob/ Ox) (2-4)
where for the ocean | have madehedenn@natadonpr ox i ma
the RHS, and b = -gmm, is called the "buoyancy." Equation (2-2) (or 2-4) may be called the

generalized Taylor-Proudman Theorem. The interpretation of (2-2) (or2-4 wi t h v & Ob/ Ox
= 0) in the yz-plane is given in Fig.2-4.

Z
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— >
£>2 AN <! 0 =const
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Fig.2-4. The interpretation of equation (2-2) in the yz-plane. The m8  produces a positive spin

in the x-direction, which tilts the originally horizontal isopycnals to become slanted isopycnals

with pasQyt i WEEe®Or osses with nOm Bz ankegativeppino d uc e |
balancing the positive spin. Equi val ent | vy, one camOe xpd @duwc ¢ h ad
negative spininx-d i r ect i on, an dilttheeneyastor so¢hat a balandihg postdize t o

spin is produced.

Once again, rotation introduces "rigidity" due to the thermal-wind balance equation (2-2). This
is vividly illustrated in the laboratory experiment summarized in Fig.2-5.
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metal cylinder frontal surface
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Copyright & 2008, Elsevier Inc. All rights reserved.

(B).

Fig.2-5. Laboratory demonstration of the thermal-wind balance: "rigidity" of fluid column to
remain aligned with the rotation axis even under the collapsing influence of gravity. (A).
Schematic sketch and (B). Laboratory experiment.
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Buoyancy Shut-Down

We are now ready to explain what buoyancy shut-down is. We will see that it is in fact a
beautiful interplay between Ekman transport, boundary mixing of stratified flow over a sloping
bottom, thermal-wind balance, subsequent shut-down of Ekman flux, and nearly frictionless
flow. All in all, the topic serves as an excellent bridge to learning fundamental geophysical fluid
dynamics.

Buoyancy Shutdown

(a) Downwelling , (b) Upwelling

Consider {a) Downwelling Case {upwelling {(b) similar physics but asymmetric!!}):

1. Initially level p-contrs & u' > 0;

2. Bot-Ekman flux is downwelling;

3. p-contrs bent->large mixing -> mixed-ayer ML, thickness J;

4. In ML, dp/dyisnow % 0; thermal wind > du/oz =-(oh/oy)/f, whereb = -gp/p_;

5. On b or p-contr, 6b=0=0b/dz Ah + db/dy Ay -> db/dy = —N‘h ., where N = db/dz;

6. For const-N, db/dy = const, so fk-Ldz across ML from z=-h to z=-h+d>u=u'-{-
h+d-z) N°h,. The 2™ term, (-h+0-z) N°h, is thermal-wind part;

7. Therefore, asd grows, the thermal-wind gets stronger until the 2™ term of (6)
at z=-hincreases to u', then u,=0=71, and Ekman flux is shutdown, i.e.
buoyancy shutdown. Physically, the interior u' “sees” a slippery bottom;

8. Atshutdown, ¢ stops growing {Chapman, JPO 2002}, and interior flow no
longer frictionally spins down—i.e. remains “strong”.

Fig.2-6. Buoyancy shutdown process in (a) downwelling case when the interior velocity u'>0
(out of page), and (b) upwelling when u' < 0.
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The process is illustrated in Fig.2-6a for the "downwelling" case, so called because, as we shall
see, the bottom Ekman transport is down the sloping bottom. The fluid is initially vertically
stratified with horizontal isopycnals over a sloping bottom of increasing depth "h™ in the positive
y-direction, i.e. dh/0y > 0 (Fig.2-6a).

Consider then, as in Fig.1-6, that a flow with x-velocity u' > 0 is initiated in the fluid interior
away from the bottom. We need not worry how this u' is produced - it could be due to wind, say.
A bottom stress z,* ~ -u' (i.e. proportional to u' but opposing it) is established, and the Ekman
transport is to the right of the stress (again as in Fig.1-6, the left half of the cyclone) down the
sloping bottom.

Downwelling bends isopycnals near the bottom (as shown in Fig.2-6a). The bottom stress
together with the lighter fluid being forced down the slope under denser water (hence
convection) produces mixing, and ob/dy (or OMJy) is produced over the sloping bottom. From
Fig.2-6a, it is clear that "b™ is a function of both y and z: b = b(y,z), so that on an isopycnal
(where b = constant), 1 b = 0 = db/0z.3h + db/dy.3y; the "0b/0z.3h" is because a change in "h"
clearly results in a change in "b" through "db/0z." Therefore,

db/dy = -0b/dz.6h/dy = -N?.0h/dy, where N? = db/6z is the buoyancy frequency.  (2-5)

The presence of db/dy produces, by the generalized Taylor-Proudman Theorem, a vertical shear
du/dz = -F1ob/dy (from equation 2-4) that prevents the fluid column near the sloping bottom
from collapsing under the influence of gravity. Therefore,

ou/oz = F*N*.6h/dy (2-6)

For simplicity, assume that N = constant, so that the above equation can be integrated across the
bottom mixed layer from any point "z" inside the mixed layer to z=-h+{, where ¢ = height above
the bottom where the velocity becomes u':

—' U - u= N%h/dy[-h+i -z]. Therefore,
u=u'- N?oh/dy[-h+i -Z] (2-7)

Interpretations:

(a) If N°or oh/0y is zero, then u = u', and we recover Fig.1-6 in which the interior velocity
extends all the way to the bottom, and the bottom stress is zy* ~ -u';

(b) Atz =-h+i (i.e. away from bottom), u = u', the interior velocity; _

(c) Atz =-h (the bottom), U=, Up=u'- N?Ah/dy.t dnitially, { =0, so that up ~u'. But with
time, 4 grows thicker, and therefore u, becomes smaller; see Fig.2-7;

(d) As{ becomes thicker and up becomes smaller, the bottom stress also becomes smaller. A
point in time is reached when up = 0. At this time, the bottom stress z,* ~ -u, M0;

(e) When z,* Th0, 1 stops growing, the fluid interior feels a zero bottom stress, and the interior
flow is "free™ in a perpetual motion! This is "buoyancy shutdown"...
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Basically, at buoyancy shutdown, the u' is canceled by the thermal-wind part * N’6h/dy.4 " and
t,=0. It arises only for stratified flow (N*I' 0) over a sloping bottom (Sh/dy r' 0).

Z
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u
6{

Fig.2-7. Time evolution (left to right) of bottom velocity uy, as bottom mixed-layer thickness 1
increases for fixed interior velocity u' and thermal-wind shear ou/oz.
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The "buoyancy-shutdown" phenomenon is of interest to scientists studying the ocean and
climate. The ocean’s basin is surrounded by continental slopes over which there are boundary
currents. Since a major sink of the current's energy is by the bottom friction, buoyancy-
shutdown can have an important effect on the time scales by which the currents slow down
and/or speed up. These in turn can affect the global ocean's overturning circulation, hence also
the global climate.

In addition to its impact on large-scale currents (affecting climate etc), shutdown of bottom
Ekman transport can lead to exports of shelf and shelfbreak particles (biological,
biogeochemical, pollutants etc) along some mid-depth isopycnal (instead of along the bottom).
The phenomenon may therefore be important also to shelf-deep ocean exchanges.

BUT, most importantly, the phenomenon is fun to learn, and it introduces many basic ideas from
geophysical fluid dynamics.

Home Work:

2-1. Explain why it is "reasonable” that the bottom stress is proportional but opposite in direction
to the fluid velocity immediately above the bottom.

2-2. Apply the same arguments given above for Fig.2-6a (the downwelling case) but for the
upwelling case in Fig.2-6b.
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Appendix A. The Coriolis Acceleration & Geostrophic Balance

To see how Coriolis acceleration arises, consider a circular dishpan half-filled with water of
constant density Mplaced on a turntable rotating at a constant rate = m (radians per second)
counter-clockwise (Fig.A-1). After many, many rotations (which may take hours) and for a
sufficiently fast m, the water level is then raised around the rim wall of the dishpan, and is
symmetrical around the center of the circulapan. The centrifugal force per unit volume
directed outward on a fluid particle is then balanced by an inward pressure gradient:

V:2¥ O hOT RO T m ChET RON (A1)
where V. = azimuthal velocity at radius r, positive counter-clockwise (i.e. same sense as M), h =
AAPOE T £ xAOAOh AT A xA EAOA OOAAwHBEAatEUAOI OOA
bottom of dishpan. If we define vto be the azimuthal velocityre/ative to the rotating
dishpan, then:

Ve=v: + mr (A2)
Then, (v + mr)2/ O ChRETHOS8 3EIi Pl EAUET Cq

v:2/r + 2 mv: CraR|o h (A3a)
where ' = h - m2r2/(29) (A3b)

is the water surface referenced to the parabolic surface?r2/(2g). The term "2mv:" is the

Coriolis acceleration term. The "Rwv: CrAhOe ET AZAAO EO OEA CAT O00O0I
large-scale flows. The centrifugal acceleration term " #r" becomes important, e.g., in a

tornado which is "small" and "fast". One may think of the rotating turntable as the "earth,"

v: = zonal velocity measured on earth, and V= zonal velocity measured in an absolute

fixed frame (relative to the star).

Suppose the dishpan has a tiny hole in the center so that water is drained through the hole.
Then a particle placed at the rim initially has zero velcity but begins to move inward. As it
does so it conserves angular momentum:

V..r = m.ri2 (the initial angular momentum at the rim; where . = dishpan's radius).
Then (vi + mr).r= mri2;, ie.v=m(ri2-r)lr (A.4)
Thus the patrticle spirals inward in an anticlockwise sense (same sense msinto the center

of the dishpan and its azimuthal speed increases as the particle nears the center A1
& A-2).
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Fig.A2. Laboratory experiments:effects of rotation on the trajectory of a particle placed
initially near the rim of the rotating circular dishpan for slow (left;
GFD3_slow_rotatiomrmpeg and fast (right; GFD3_fast_rotatiormpeg) rotations.
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Appendix B. The Potential Vorticity (PV) Equation

I will derive the Potential Vorticity relation for the shallow-water, 1-layer (of depth = h) fluid of
constant density:

Du/Dt + fk x u =-gnh (B.1a,b)
Dh/Dt+hl.u =Q (B.Ic)

where u = (u,v,0) is the horizontal velocity vector. The 1st eqn. is the vector form of the x & y-
momentum equations and the 2nd is the equation of conservation of volume with a source Q
(sink if Q<0). The "D/Dt" is the material derivative = differentiation following a fluid parcel,
D/ Dt = O/ 0t + ulO/dx + vO/ Oy; or more generall
Du/Dt can also be written as [e.g. Gill, 1982]:
Du/ Dt u/ =0 G v+ n|u?)2; d =nxu. (B.2)

Take the curl of (B.1a,b), 1 x(B.1a,b), and noting that 3 = (0, 0, ), we get for the middle term in
(B.2):

xS xu)=3 (M.u) - WY + und - @ =ks(n.u)+kun B

since the shaded terms are identically zero. We have used the formula " x(axb) = a(" .b)-
b(".a)+b.na-(a.n)b. Also,

1 (floxu) = fl(u) - R + u.n fic - B = fl(1 .u) + k(u.n )
Then k.1 x(B.1a,b) becomes (note that U x( [u?[) = 0):
Q& Oun B (fr¥n.u+unf=0

or,  (Dw/Dt)/h- (4/h*)Dh/Dt =-8Q/h> after using (B.1c),

1.e. D(i,/h)/Dt = -5,Q/h’ after rearranging, (B.3)

where B, =f+ K is the absolute vorticity, and K/h = PV is the potential vorticity.



