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Part 1. Introduction & Spin-Down of an Eddy 

 
The Power of Wind 

 

Although the topic of what we will study, "buoyancy shut-down", does not even 

require wind to explain, wind ultimately drives the ocean and it is fundamental to 

our understanding of all sorts of ocean (and atmosphere!) related phenomena.  We 

begin therefore with a study of how wind drives ocean currents. 

 

Wind inputs an estimated 20TW (TeraWatts = 10
12

 J s
-1

) of power into the ocean.  

Approximately 19TW is consumed in the surface "mixed" layer (ML) of depth ~ 

100m, generating all sorts of small-scale (< 10km) and rapidly varying (< 1day) 

currents and mixing.  The remaining (≈1TW) drives the large-scale ocean 

circulation, eddies and waves beneath the mixed layer, and produces also bottom 

mixing [Wunsch and Ferrari, 2004; Fig.1-1].  Wind, together with solar heating,1 

and in a coupled manner with the air above it, then produces and/or affects various 

wonderful (and some not so wonderful) things that we have come to associate with 

the ocean: currents, waves, seafood, clouds, rain, snow, typhoons, ... 

 

 
 

Fig.1-1. Wind-induced ocean currents and mixing in the surface mixed layer, in 

the nearly geostrophic interior, and near the ocean's bottom. 

  

                                                 
1 The sun, of course, is the driver of all things (nearly!) on our planet. 
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The (Nearly) Frictionless Ocean's (& Atmosphere's) Interior 
 

In the fluid's (ocean's or atmosphere's) interior away from the air-sea interface and 

bottom topography (including the coasts), fluid moves as if it does not have 

friction (to slow it down).  For large-scale flows, with spatial scales ≈ 100's (10's) 

to 1000's km for the atmosphere (ocean), and time scales longer than days and 

months, fluid is nearly hydrostatic - meaning that the pressure (p) upon one's head 

is equal to the weight per unit area of all the fluid above it (the head; Fig.1-2): 
 

p(x,y,z,t) = pa(x,y,t) + ᷿ rὼȟώȟᾀᴂȟὸὫ Ὠᾀᴂ
h ȟȟ

,     or     Öp/Öz = ῐʍÇ (1-1)  

 

  
Fig.1-2. A sketch of fluid of mean depth H(x,y) and free surface h(x,y,t), and the 

hydrostatic pressure upon one's head.  For ocean, pa is the atmospheric pressure. 
 

Large-scale flows are also nearly geostrophic - meaning that the Coriolis force 

associated with the fluid's velocity balances the pressure gradient force (Fig.1-3; 

Appendix A): 
 

 fk×u = ῐɳp/ʍ = -g pɳZ  on pressure-coordinate.2 (1-2a) 

 

or  u = k× pɳ/( fʍ) = ( g/ f)k× pɳZ (1-2b)  
 

Here, Z = height and k = unit vector in z-direction. 
 

  
Fig.1-3. Geostrophic flows around high and low pressures in the N. Hemisphere 

[from Marshall & Plumb, 2003].  Note  ◑ = k. 

 

                                                 
2 For atmosphere, it is convenient to define variables on constant-pressure surfaces.  Thus, pɻ Ґ л Ґ ҜpκҜȄΦʵȄ Ҍ 
ҜpκҜzΦʵ½Σ ǎƻ ҜpκҜx = -ҜpκҜzΦʵ½κʵȄ Ґ ҌʍƎΦόҜ½κҜȄύμp, where the |p reminds us that pressure is to be kept constant; 
ŀƴŘ ǎƛƳƛƭŀǊƭȅ ŦƻǊ ҜκҜȅΦ  ¢ƘǳǎΣ ǘƘŜ Ϧʍ" disappears in (1-2), where also ɳp  ЋȾЋØȟЋȾЋÙ ȿp. 
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Those of us who watch a lot of TV should be familiar with weather charts (Fig.1-4) which 

actually provide wonderful examples of geostrophic flows. 

 

Fig.1-4. Surface pressure (mbar; top) and winds (bottom) on Nov/21 2011 in NW Pacific. 

Note that east of Taiwan, the p-contours are nearly zonal, so that geostrophic winds are easterly.  

But the wind vectors are actually from the northeast.  Why? 

   

Fig.1-5. Balance of forces in flow (a) without and (b) with friction. 

Home Work: 

Explain why air diverges (converges) under a high- (low-) pressure center; and why therefore 

center of low (high) is generally associated with cloudy (sunny) days. 
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Potential Vorticity (PV) 
 

To progress, we need to understand a scalar variable called potential vorticity.  The PV-

conservation equation for a single-layer fluid is derived in Appendix B.  Approximating the 

material derivative D/Dt ≈ ∂/∂t, and linearizing also the RHS, we get from (B.3): 
 

 Ö[(ʁ+f)/h]/Öt å -f.Q/H
2
         (1-3) 

 

where ʁ = z-component of the relative vorticity, h = layer thickness, H = mean layer thickness (a 

constant), and Q = rate (m/s) at which fluid is pumped into (if Q>0) or withdrawn from (if Q<0) 

the layer.  For our purpose, it suffices to take f = constant.  For Q = 0, eqn.(1-3) then says that 
 

 PV = (ʁ+f)/h is constant,  Q = 0.       (1-4) 
 

The fluid acquires a positive (negative) change in its spin, ɝʁ > 0 (ɝʁ<0), if the layer is stretched 

ɝh > 0 (squashed, ɝh < 0). 

 

Mr. Ekman's Work 

 

Observations of the drift of the vessel Fram as it was frozen into the ice during the Norwegian 

explorer Fridtjof Nansen’s (1861-1930) polar expedition of 1893–96 provided insight into the 

response of the surface layer of the ocean to wind forcing. Nansen found that the drift of the ice, 

and thus the current immediately underneath it, was on average directed between 20 and 40
o
 to 

the right of the wind direction.  Nansen and physicist and meteorologistVilhelm Bjerknes (1862-

1951), also a Norwegian, discussed with and suggested to the young Swedish mathematical 

physicist V. Walfrid Ekman (1974-1954), then a student, to treat the problem more formally 

[Jenkins and Bye, 2006].  It was told that Ekman solved the problem that very evening, 

producing the now famous Ekman spiral [Munk, 2002].  For the case of a simple "eddy-

viscosity" representation of the vertical shear stress, the Ekman's spiral is easily obtained 

(Appendix C), and it predicts that the surface current is directed at 45
o
 angle to the wind stress 

direction.  For more realistic profile of the eddy viscosity using for example the popular Mellor-

Yamada turbulence closure scheme [Mellor and Yamada, 1982], an angle of 22
o
 (which is closer 

to that observed) can be obtained. 

 

For our purpose, we need not worry about these details however.  The brilliance of Mr.Ekman is 

his recognition that the near-surface (or near-bottom) layer is where shear stresses are important, 

and that the layer smoothly joins beneath (above) it to the much thicker layer in which 

geostrophic balance is valid.  This idea is of course at the root of "boundary-layer" theory by the 

German engineer Ludwig Prandtl [1904], an idea that revolutionarized the 20th century applied 

mathematics.  To (1-2a) we add a vertical shear stress term: 

 

 fk×u = ῐɳp/ʍo  ЋʐȾЋÚ        (1-5) 
 
where ʐ  ʐxȟ ʐy) is the stress vector and we have also made the approximation that the 
ÄÅÎÓÉÔÙ ÏÆ ÔÈÅ ÏÃÅÁÎ ÉÎ ÔÈÅ ÐÒÅÓÓÕÒÅ ÇÒÁÄÉÅÎÔ ÔÅÒÍ ÃÁÎ ÂÅ ÁÓÓÕÍÅÄ ÔÏ ÂÅ Á ÃÏÎÓÔÁÎÔ ʍo.  the 
geostrophic velocity ug satisfy: 
 
 fk×ug = ῐɳp/ʍo         (1-6) 
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so that the previous equation (1-5) can be rewritten as: 
 

 fk×uE = ЋʐȾЋÚ          (1-7) 
 

where uE = u - ug is the Ekman velocity = velocity relative to the geostrophic velocity.  
)ÎÔÅÇÒÁÔÅ ᷿ÄÚ from a deep interior (but far above the ocean's bottom) to the surface: 
 

 fk×UE = ʐo          (1-8a) 
 

where UE = ᷿ ◊▀◑ is the Ekman transport (per unit distance), and we have used the fact 

that the stress far below the surface, ʐ|-қ Ғ 0, i.e. is very small.  Therefore, 
 

 UE = -k × ʐo/f,  or (UE, VE   ʐoy, -ʐox)/f      (1-8b) 
 

Ekman transport is therefore always directed at right (90o) angle to the right (for N. 
Hemisphere, f>0) of the stress. 
 
Spin-Down of an Eddy 

    

Fig.1-6. Bottom friction on a cyclone pumps fluid to its center at the bottom (Ekman flux) and 

(as fluid upwells) squashes layers above producing anticyclonic anomaly that slows down the 

cyclone.  Interior fluid is also forced outward against the pressure gradient, thus doing work at 

the expense of the pressure gradient that supports the cyclone. 
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Part 2. Stratified flow over a sloping topography & buoyancy shut-down 

Flow Rigidity due to Rotation: Thermal Wind Balance & Taylor-Proudman Theorem  

Take the curl of (1-2a): ×ɳ[ ʍĬu = ῐᶯÐȾʍ], where ʍ = fk.  The LHS is: 

 ×ɳ(ʍ×u) = ʍ( .ɳu) - u( .ɳʍ) + u. ʍɳ - ʍ. uɳ = u. ʍɳ - ʍ. uɳ 

 

where we have used ×ɳ(a×b) = a .ɳb - b .ɳa + b. aɳ - a. bɳ, for any 2 vectors a and b, .ɳu = 

Öu/Öx+Öv/Öy+Öw/Öz å 0, and u( .ɳfk)  0.  The RHS is: 

 

 - ×ɳ( pɳ/ʍ) = -( ×ɳ pɳ)/ʍ + (ᶯʍ×ᶯÐ) /ʍ2
 = (ᶯʍ×ᶯÐ) /ʍ2

 

 

Thus, ʍ.ɳ u + (ᶯʍ×ᶯÐ/ʍ2
 = u. ʍɳ       (2-1) 

 

For motion such that both |u| and ʍɳ are small (the latter means that ʍ å constant), u. ʍɳ  πȟ the 

RHS may be neglected, hence the Thermal-Wind Balance equation: 

 

 ʍȢuɳ + (ᶯʍ×ᶯÐ/ʍ2
 = 0       (2-2) 

 

If ʍ = constant, or if the pressure and density surfaces coincide or are parallel to each other, then, 

 

 ᶯʍ×ᶯÐ  πȟ ÁÎÄ ʍȢuɳ  fÖu/Öz = 0      (2-3) 

 

The velocity must then be independent of z.  If the flow is further constrained by an upper or 

lower boundary where w = 0, then w  0 everywhere and the horizontal velocity then has no 

vertical shears: 

 

 Ö(u,v)/Öz = 0.         (2-4) 

 

Equation (2-3) is the Taylor-Proudman theorem [formula derived by Proudman, 1916] and 

Taylor [1917] demonstrated it in a laboratory experiment (figs.2-1, 2-2 & 2-3). 

 

  
Fig.2-1. In a rapidly rotating tank, slow horizontal flow goes around a solid (cylindrical) obstacle 

that partially protrudes from the bottom of the tank. 
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Fig.2-2. Laboratory demonstration of Taylor-Proudman Theorem.  In a rotating tank, floating 

debris flow around an obstacle that partially protrudes from the bottom of the tank. 
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Fig.2-3. Numerical demonstration of Taylor-Proudman Theorem: nearly-steady homogeneous 

(constant-density) flow in an x-periodic channel, 600km by 300km, of depth 200m except at the 

channelôs center where a cylinder rises 50m above the bottom.  Color is sea-surface height in 

meters and vectors are velocity at (A) z=0m (i.e. surface), (B) z=-90m and (C) z=-180m.  This 

model calculation was carried out for 100 days when the flow has reached a nearly steady state.  

Flow below the cylinderôs height goes around the octagonal obstacle while above it the flow also 

tends to go around as if the cylinder extends to the surface.  The velocity does not vary with ñzò 

and the vertical velocity (which is not shown) is nearly zero. 
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Rotation therefore imparts "rigidity" to the fluid in the direction of the rotation vector. 

 

For non-constant ʍ, and if the pressure and density surfaces do not coincide or are not parallel to 

each other, ᶯʍ×ᶯÐ ґ 0.  Equation (2-2) then says that, in a rapidly rotating flow, the fluid's spin 

produced in the stream-wise direction (x-direction, say) as a result of tilting of the background 

spin in that same direction, ʍȢuɳ, is balanced by the cross (×) between density and pressure 

surfaces, (ᶯʍ×ᶯÐ/ʍ2
.  To a good approximation, the ᶯÐ in the cross-product ᶯʍ×ᶯÐ may be 

approximated by kÖp/Öz, pointing downward: 

 

 pɳ å (0, 0, Öp/Öz) = (0, 0, -ʍg)       (2-3) 

 

Equation (2-2) then becomes: 

 

 f (Öu/Öz, Öv/Öz) = (g/ʍo).(Öʍ/Öy, -Öʍ/Öx) = (-Öb/Öy, Öb/Öx)    (2-4) 

 

where for the ocean I have made the approximation that the density å ʍo in the denominator on 

the RHS, and b = -gʍ/ʍo is called the "buoyancy."  Equation (2-2) (or 2-4) may be called the 

generalized Taylor-Proudman Theorem.  The interpretation of (2-2) (or 2-4 with v & Öb/Öx both 

= 0) in the yz-plane is given in Fig.2-4. 

 

 
Fig.2-4. The interpretation of equation (2-2) in the yz-plane.  The ʍȢuɳ produces a positive spin 

in the x-direction, which tilts the originally horizontal isopycnals to become slanted isopycnals 

with positive Öʍ/Öy.  The Öʍ/Öy then crosses with Öp/Öz to produce (ᶯʍ×ᶯÐ/ʍ2
 = a negative spin, 

balancing the positive spin.  Equivalently, one can explain that the positive Öʍ/Öy produces a 
negative spin in x-direction, and requires a Öu/Öz to tilt the ʍ-vector so that a balancing positive 

spin is produced. 

 

Once again, rotation introduces "rigidity" due to the thermal-wind balance equation (2-2).  This 

is vividly illustrated in the laboratory experiment summarized in Fig.2-5. 
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(A) 
 

   
(B). 

Fig.2-5. Laboratory demonstration of the thermal-wind balance: "rigidity" of fluid column to 

remain aligned with the rotation axis even under the collapsing influence of gravity. (A). 

Schematic sketch and (B). Laboratory experiment. 
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Buoyancy Shut-Down  

We are now ready to explain what buoyancy shut-down is.  We will see that it is in fact a 

beautiful interplay between Ekman transport, boundary mixing of stratified flow over a sloping 

bottom, thermal-wind balance, subsequent shut-down of Ekman flux, and nearly frictionless 

flow.  All in all, the topic serves as an excellent bridge to learning fundamental geophysical fluid 

dynamics. 

 

 
Fig.2-6. Buoyancy shutdown process in (a) downwelling case when the interior velocity u

i
 > 0 

(out of page), and (b) upwelling when u
i
 < 0. 
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The process is illustrated in Fig.2-6a for the "downwelling" case, so called because, as we shall 

see, the bottom Ekman transport is down the sloping bottom.  The fluid is initially vertically 

stratified with horizontal isopycnals over a sloping bottom of increasing depth "h" in the positive 

y-direction, i.e. ∂h/∂y > 0 (Fig.2-6a). 

 

Consider then, as in Fig.1-6, that a flow with x-velocity u
i
 > 0 is initiated in the fluid interior 

away from the bottom.  We need not worry how this u
i
 is produced - it could be due to wind, say.  

A bottom stress ʐb
x
 ~ -u

i
 (i.e. proportional to u

i
 but opposing it) is established, and the Ekman 

transport is to the right of the stress (again as in Fig.1-6, the left half of the cyclone) down the 

sloping bottom. 

 

Downwelling bends isopycnals near the bottom (as shown in Fig.2-6a).  The bottom stress 

together with the lighter fluid being forced down the slope under denser water (hence 

convection) produces mixing, and ∂b/∂y (or ∂ʍ/∂y) is produced over the sloping bottom.  From 

Fig.2-6a, it is clear that "b" is a function of both y and z: b = b(y,z), so that on an isopycnal 

(where b = constant), bɻ = 0 = ∂b/∂z.ɝh + ∂b/∂y.ɝy; the "∂b/∂z.ɝh" is because a change in "h" 

clearly results in a change in "b" through "∂b/∂z."  Therefore, 

 

 ∂b/∂y = -∂b/∂z.∂h/∂y = -N
2
.∂h/∂y, where N

2
 = ∂b/∂z is the buoyancy frequency. (2-5) 

 

The presence of ∂b/∂y produces, by the generalized Taylor-Proudman Theorem, a vertical shear 

∂u/∂z = -f
-1

∂b/∂y (from equation 2-4) that prevents the fluid column near the sloping bottom 

from collapsing under the influence of gravity.  Therefore, 

 

 ∂u/∂z = f
-1

N
2
.∂h/∂y         (2-6) 

 

For simplicity, assume that N
2
 = constant, so that the above equation can be integrated across the 

bottom mixed layer from any point "z" inside the mixed layer to z=-h+ ,ɻ where  ɻ= height above 

the bottom where the velocity becomes u
i
: 

 

 ᷿
 
Ὠᾀ  ui

 - u = N
2
∂h/∂y[-h+ -ɻz].  Therefore, 

 

 u = u
i
 - N

2
∂h/∂y[-h+ -ɻz]        (2-7) 

 

Interpretations:   

 

(a)  If N
2
 or ∂h/∂y is zero, then u = u

i
, and we recover Fig.1-6 in which the interior velocity 

extends all the way to the bottom, and the bottom stress is ʐb
x
 ~ -u

i
; 

(b)  At z = -h+  ɻ(i.e. away from bottom), u = u
i
, the interior velocity; 

(c)  At z = -h (the bottom), u|z=-h  ub = u
i
 - N

2
∂h/∂y.ʵΦ  Initially,  ɻ≈ 0, so that ub ≈ u

i
.  But with 

time,  ɻgrows thicker, and therefore ub becomes smaller;  see Fig.2-7; 

(d)  As  ɻbecomes thicker and ub becomes smaller, the bottom stress also becomes smaller.  A 

point in time is reached when ub = 0.  At this time, the bottom stress ʐb
x
 ~ -ub Ҧ 0; 

(e)  When ʐb
x
 Ҧ 0,  ɻstops growing, the fluid interior feels a zero bottom stress, and the interior 

flow is "free" in a perpetual motion!  This is "buoyancy shutdown"... 
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Basically, at buoyancy shutdown, the u
i
 is canceled by the thermal-wind part " N

2
∂h/∂y. "ɻ and 

tb=0.  It arises only for stratified flow (N
2
 ґ 0) over a sloping bottom (∂h/∂y ґ 0).   

 

 
Fig.2-7. Time evolution (left to right) of bottom velocity ub as bottom mixed-layer thickness  ɻ

increases for fixed interior velocity u
i
 and thermal-wind shear ∂u/∂z. 

 

The "buoyancy-shutdown" phenomenon is of interest to scientists studying the ocean and 

climate.  The ocean's basin is surrounded by continental slopes over which there are boundary 

currents.  Since a major sink of the current's energy is by the bottom friction, buoyancy-

shutdown can have an important effect on the time scales by which the currents slow down 

and/or speed up.  These in turn can affect the global ocean's overturning circulation, hence also 

the global climate. 

 

In addition to its impact on large-scale currents (affecting climate etc), shutdown of bottom 

Ekman transport can lead to exports of shelf and shelfbreak particles (biological, 

biogeochemical, pollutants etc) along some mid-depth isopycnal (instead of along the bottom).  

The phenomenon may therefore be important also to shelf-deep ocean exchanges. 

 

BUT, most importantly, the phenomenon is fun to learn, and it introduces many basic ideas from 

geophysical fluid dynamics. 

 

 

Home Work: 

2-1. Explain why it is "reasonable" that the bottom stress is proportional but opposite in direction 

to the fluid velocity immediately above the bottom. 

2-2. Apply the same arguments given above for Fig.2-6a (the downwelling case) but for the 

upwelling case in Fig.2-6b. 
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Appendix A. The Coriolis Acceleration & Geostrophic Balance 

 

To see how Coriolis acceleration arises, consider a circular dishpan half-filled with water of 

constant density ʍ placed on a turntable rotating at a constant rate = ʍ (radians per second) 
counter-clockwise (Fig.A-1).  After many, many rotations (which may take hours) and for a 
sufficiently fast ʍ, the water level is then raised around the rim wall of the dishpan, and is 
symmetrical around the center of the circular pan.  The centrifugal force per unit volume 
directed outward on a fluid particle is then balanced by an inward pressure gradient: 
 
 Vʻ2ȾÒ  ЋÐȾЋÒ Ⱦʍ   ÇЋÈȾЋÒȟ       (A.1) 
 
where V  ̒= azimuthal velocity at radius r, positive counter-clockwise (i.e. same sense as ʍ), h = 
ÄÅÐÔÈ ÏÆ ×ÁÔÅÒȟ ÁÎÄ ×Å ÈÁÖÅ ÕÓÅÄ ÔÈÅ ÈÙÄÒÏÓÔÁÔÉÃ ÒÅÌÁÔÉÏÎ ÔÈÁÔ Ð  ʍÇ È-z) with z=0 at 
bottom of dishpan.  If we define v̒ to be the azimuthal velocity relative to the rotating 
dishpan, then: 
 
 V  ̒= v  ̒+ ʍr          (A.2) 
 
Then, (v  ̒+ ʍr) 2/Ò  ÇЋÈȾЋÒȢ  3ÉÍÐÌÉÆÙÉÎÇȡ 
 
 vʻ2/r + 2 ʍv  ̒  ÇЋȾ́ЋÒȟ        (A.3a) 
 
where  ́= h - ʍ2r2/(2g)          (A.3b) 
 
is the water surface referenced to the parabolic surface ʍ2r2/(2g).  The term "2ʍv "̒ is the 
Coriolis acceleration term.  The "2ʍv  ̒  ÇЋȾ́ЋÒͼ ÉÎ ÆÁÃÔ ÉÓ ÔÈÅ ÇÅÏÓÔÒÏÐÈÉÃ ÒÅÌÁÔÉÏÎ ÖÁÌÉÄ ÆÏÒ 
large-scale flows.  The centrifugal acceleration term " v̒2/r" becomes important, e.g., in a 
tornado which is "small" and "fast".  One may think of the rotating turntable as the "earth," 
v  ̒= zonal velocity measured on earth, and V̒ = zonal velocity measured in an absolute 
fixed frame (relative to the star). 
 
Suppose the dishpan has a tiny hole in the center so that water is drained through the hole.  
Then a particle placed at the rim initially has zero velocity but begins to move inward.  As it 
does so it conserves angular momentum: 
 
 V .̒r = ʍ.r12 (the initial angular momentum at the rim; where r1 = dishpan's radius). 
 
Then (v  ̒+ ʍr).r = ʍ.r12; i.e. v̒  = ʍ(r 12 - r2)/r       (A.4) 
 
Thus the particle spirals inward in an anticlockwise sense (same sense as ʍ) into the center 
of the dishpan, and its azimuthal speed increases as the particle nears the center (Figs.A-1 
& A-2).  
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Fig.A-1. Illustrating the effects of rotation. 
 
 

  
 
Fig.A-2. Laboratory experiments: effects of rotation on the trajectory of a particle placed 
initially near the rim of the rotating circular dishpan for slow (left ; 
GFD3_slow_rotation.mpeg) and fast (right; GFD3_fast_rotation.mpeg) rotations. 
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Appendix B. The Potential Vorticity (PV) Equation 

 

I will derive the Potential Vorticity relation for the shallow-water, 1-layer (of depth = h) fluid of 

constant density: 

 

 Du/Dt + fk × u = -g hɳ       (B.1a,b) 

 Dh/Dt + h .ɳu = Q        (B.1c) 

 

where u = (u,v,0) is the horizontal velocity vector.  The 1st eqn. is the vector form of the x & y-

momentum equations and the 2nd is the equation of conservation of volume with a source Q 

(sink if Q<0).  The "D/Dt" is the material derivative = differentiation following a fluid parcel, 

D/Dt = Ö/Öt + uÖ/dx + vÖ/Öy; or more generally D/Dt = Ö/Öt + uÖ/dx + vÖ/Öy + wÖ/Öz.  The 

Du/Dt can also be written as [e.g. Gill, 1982]: 

 

 Du/Dt = Öu/Öt + ʖ × u + |ɳu
2
|/2; ʖ = ×ɳu.    (B.2) 

 

Take the curl of (B.1a,b), ×ɳ(B.1a,b), and noting that ʖ = (0, 0, ʁ), we get for the middle term in 

(B.2): 

 

 ×ɳ(ʖ×u) = ʖ ( .ɳu) - u ( .ɳʖ) + u. ʖɳ - (ʖ. )ɳu = kʁ ( .ɳu) + k u.ᶯʁ 
 

since the shaded terms are identically zero.  We have used the formula ×ɳ(a×b) = a( .ɳb)-

b( .ɳa)+b. aɳ-(a. )ɳb.  Also, 

 

 ×ɳ (fk×u) = fk( .ɳu) - u( .ɳfk) + u. fɳk - fk. uɳ = fk( .ɳu) + k(u. fɳ) 

 

Then k. ×ɳ(B.1a,b) becomes (note that ×ɳ( |ɳu
2
|) = 0): 

 

 Öʁ/Öt + u.ᶯʁ + (f+ʁ) .ɳu + u. fɳ = 0 

 

or, (Dʁa/Dt)/h - (ʁa/h
2
)Dh/Dt = -ʁaQ/h

2
 after using (B.1c), 

 

i.e. D(ʁa/h)/Dt = -ʁaQ/h
2
   after rearranging,    (B.3) 

 

where ʁa = f + ʁ, is the absolute vorticity, and ʁa/h = PV is the potential vorticity. 

 
 


